Математические модели в строительстве примеры. Математическое моделирование работы строительной конструкции. Математическое моделирование в строительстве

, Расчет тусы на Даче Ивана в День России.pdf , сравнительная характеристика зон россии.docx , Министерство образования и науки России.docx .


Введение

  1. Обзор применения моделей в экономике

    1. Исторический обзор

    2. Развитие моделирования в России

  2. Основные виды задач, решаемых при организации, планировании и управлении строительством

    1. Задачи распределения

    2. Задачи замены

    3. Задачи поиска

    4. Задачи массового обслуживания или задачи очередей

    5. Задачи управления запасами (создание и хранение)

    6. Задачи теории расписаний

  3. Моделирование в строительстве

    1. Основные положения

    2. Виды экономико-математических моделей в области организации, планирования и управления строительством

      1. Модели линейного программирования

      2. Нелинейные модели

      3. Модели динамического программирования

      4. Оптимизационные модели (постановка задачи оптимизации)

      5. Модели управления запасами

      6. Целочисленные модели

      7. Цифровое моделирование (метод перебора)

      8. Имитационные модели

      9. Вероятностно - статистические модели

      10. Модели теории игр

      11. Модели итеративного агрегирования

      12. Организационно-технологические модели

      13. Графические модели

      14. Сетевые модели

  4. Организационное моделирование систем управления строительством

    1. Основные направления моделирования систем управления строительством

    2. Аспекты организационно-управленческих систем (моделей)

    3. Деление организационно-управленческие моделей на группы

      1. Модели первой группы

      2. Модели второй группы

    4. Виды моделей первой группы

      1. Модели принятия решений

      2. Информационные модели коммуникационной сети

      3. Компактные информационные модели

      4. Интегрированные информационно-функциональные модели

    5. Виды моделей второй группы

      1. Модели организационно-технологических связей

      2. Модель организационно-управленческих связей

      3. Модель факторного статистического анализа управленческих связей

      4. Детерминированные функциональные модели

      5. Организационные модели массового обслуживания

      6. Организационно-информационные модели

      7. Основные этапы и принципы моделирования

  5. Методы корреляционно-регрессивного анализа зависимости между факторами, включаемые в экономико-математические модели

    1. Виды корреляционно-регрессивного анализа

    2. Требования к факторам, включаемым в модель

    3. Парный корреляционно-регрессивный анализ

    4. Множественный корреляционный анализ

ВВЕДЕНИЕ


Современное строительство - это очень сложная система, в деятельности которой принимает большое количество участников: заказчик, генподрядные и субподрядные строительно-монтажные и специализированные организации; коммерческие банки и финансовые органы и организации ; проектные, а нередко и научно-исследовательские институты; поставщики строительных материалов, конструкций, деталей и полуфабрикатов, технологического оборудования; организации и органы, осуществляющие различные виды контроля и надзора за строительством; подразделения, эксплуатирующие строительную технику и механизмы, транспортные средства и т.д.

Для того, чтобы построить объект, необходимо организовать согласованную работу всех участников строительства.

Строительство протекает в непрерывно меняющихся условиях. Элементы такого процесса связаны между собой и взаимно влияют друг на друга, что усложняет анализ и поиск оптимальных решений.

На стадии проектирования строительной, любой другой производственной системы, устанавливаются ее основные технико-экономические параметры, организационно-управленческая структура, ставится задача определения состава и объема ресурсов - основных фондов , оборотных средств, потребности в инженерных, рабочих кадрах и т.д.

Чтобы вся система строительства действовала целесообразно, эффективно использовала ресурсы, т.е. выдавала готовую продукцию - здания, сооружения, инженерные коммуникации или их комплексы в заданные сроки, высокого качества и с наименьшими затратами трудовых, финансовых, материальных и энергетических ресурсов, надо уметь грамотно, с научной точки зрения, осуществлять анализ всех аспектов ее функционирования, находить наилучшие варианты решений, обеспечивающих ее эффективную и надежную конкурентоспособность на рынке строительных услуг.

В ходе поиска и анализа возможных решений по созданию оптимальной структуры предприятия , организации строительного производства и т.д. всегда появляется желание (требуется) отобрать лучший (оптимальный) вариант. Для этой цели приходится использовать математические расчеты, логические схемы (представления) процесса строительства объекта, выраженные в виде цифр, графиков, таблиц и т.д. - другими словами, представлять строительство в виде модели, используя для этого методологию теории моделирования.

В основе любой модели лежат законы сохранения. Они связывают между собой изменение фазовых состояний системы и внешние силы, действующие на нее.

Любое описание системы, объекта (строительного предприятия, процесса возведения здания и т.д.) начинается с представления об их состоянии в данный момент, называемом фазовым.

Успех исследования, анализа, прогнозирования поведения строительной системы в будущем, т.е. появления желаемых результатов ее функционирования, во многом зависит от того, насколько точно исследователь "угадает" те фазовые переменные, которые определяют поведение системы. Заложив эти переменные в некоторое математическое описание (модель) этой системы для анализа и прогнозирования ее поведения в будущем , можно использовать достаточно обширный и хорошо разработанный арсенал математических методов, электронно-вычислительную технику.

Описание системы на языке математики называется математической моделью, а описание экономической системы – экономико-математической моделью.

Многочисленные виды моделей нашли широкое применение для предварительного анализа, планирования и поиска эффективных форм организации, планирования и управления строительством.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методами и моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

Мы считаем, что каждый инженер, менеджер, работающий в сфере строительства - на возведении конкретного объекта, в проектном или научно-исследовательском институте, должен иметь представление об основных классах моделей, их возможностях и областях применения

Так как формулировка любой задачи, включая алгоритм ее решения, является в некотором смысле своеобразной моделью и более того, создание любой модели начинается с постановки задачи, мы сочли возможным начать тему моделирования с перечня основных задач, стоящих перед строителями.

Сами математические методы не являются объектом рассмотрения в данном учебном пособии, а конкретные модели и задачи приводятся с учетом их значимости и частоты применения в практике организации , планирования и управления строительством.

В случае создания модели сложных строительных объектов к процессу моделирования и анализа моделей привлекаются программисты, математики, инженеры-системотехники, технологи, психологи, экономисты, менеджеры и другие специалисты, а также используются электронно-вычислительная техника.

1.3.1. Совокупность математических выражений, отражающих связь между параметрами описания и поведения системы, а также способ их преобразования, приводящий к отысканию значений параметров, принимаемых неизвестными, условимся считать математической моделью процесса, явления, системы.

Применительно к расчету строительной конструкции параметрами описания системы будут геометрия и топология системы, характеристики материалов, топология и характеристика воздействий.

Параметры поведения системы - изменения геометрии и топологии системы, характеристик материалов и напряжений.

1.3.2. Задачи, в которых известны параметры описания системы, а не известны - поведения, принято называть прямыми, решаемыми классическими методами строительной механики, теории упругости, сопротивления материалов. Для решения основных типов таких задач разработаны методы решения и составлены программы для ЭВМ, позволяющие автоматически получать результаты, изменяя исходные данные. Решение, как правило, вытекает из детерминированной системы уравнений, однозначно связывающей исходную информацию о системе с результатом расчета.

Задачи, в которых неизвестные - некоторые параметры описания системы, называются обратными и решаются методами идентификации систем с применением систем уравнений, количество которых существенно превышает количество неизвестных. Применительно к строительным конструкциям такие задачи возникают при экспериментальных исследованиях, в том числе при реконструкции зданий и сооружений, и связаны с определением жесткости элементов, узлов и опорных частей, а также величины действующей нагрузки .

1.3.3. Математические модели работы строительных конструкций вытекают из следующих основных вариационных принципов механики:

возможных изменений перемещений (возможной работы); как частный случай, известный принцип Лагранжа, связанный с понятием полной потенциальной энергии деформации, получаем дифференциальные уравнения равновесия;

возможных изменений напряженного состояния (возможной дополнительной работы); частный случай - принцип Кастильяно, связанный с понятием дополнительной потенциальной энергии деформации; получаем дифференциальные уравнения равновесия .

Построение смешанного функционала позволяет получить уравнения смешанного метода .

Данные принципы и методы решения систем уравнений применялись для решения задач анализа континуальных систем типа пластин и оболочек. При этом для решения дифференциальных уравнений могут быть привлечены математические методы дискретизации, позволяющие свести задачу к решению дифференциальных уравнений в частных производных или к системе алгебраических уравнений . Сущность такого подхода в физическом смысле соответствует замене систем с бесконечным количеством степеней свободы системой c конечным числом степеней свободы, эквивалентной первой в энергетическом смысле.

1.3.3. Математическая сущность подхода к расчету конструкций на основе идеализации континуальной среды дискретными элементами, названного методом конечных элементов - МКЭ обоснована заменой системы дифференциальных уравнений системой алгебраических, имеющих каноническую форму (структура инвариантна по отношению к конкретному виду конструкций), в матричной форме записываемую в виде:

АΧ = Р + F , (1)

где A - матрица коэффициентов системы, зависящая от параметров описания системы; Р - матрица, зависящая от параметров описания воздействий на систему; X - матрица неизвестных, зависящая от параметров поведения системы; F - матрица параметров начального состояния системы.

1.3.4. Наиболее распространенным МКЭ следует считать в форме метода перемещений, для которого матрица A имеет смысл матрицы реакции или жесткости системы, а Χ - матрица смещений, Р - матрица силовых воздействий, F - матрица начальных усилий.

Порядок системы уравнений (1) определяется числом степеней свободы расчетной модели. Применительно к методу перемещений ими станут возможные перемещения точек или сечений, называемых узлами, перемещения которых однозначно определяют расчетное деформированное и напряженное состояние системы, что достигается представлением континуальной среды системой элементов, имеющих конечные размеры и конечное число степеней свободы.

1.3.5. Конечные элементы (КЭ) соединяются между собой в точках или по линиям. Исходя из принципа виртуальной работы для каждого КЭ должно быть назначено возможное поле перемещений, описываемое аппроксимирующими полиномами-функциями формы . Напряженное состояние каждого КЭ - производная функции формы, или независимая функция.

1.3.6. Напряженное и деформированное состояние расчетной модели рассматривается как линейная комбинация состояний отдельных элементов системы, удовлетворяющая условиям совместности деформирования и равновесия.

Расчетная модель конструкции состоит из двух частей: расчетной схемы и набора аппроксимирующих функций. Расчетной схемой можно считать графическое или зрительное представление конструкции, составленное из набора расчетных элементов, связей между ними, и граничных условий закрепления.



1.3.7. Ввиду того, что уровень теоретических разработок в области расчета конструкций МКЭ достаточно высок и доведен до практического применения, все этапы расчета и связь между ними осуществляются программно.

При выборе программы (табл. 1) необходимо, в первую очередь, определить ее возможности с точки зрения аппроксимации заданного конструктивного решения соответствующими расчетными элементами. При расчете стержневых систем альтернативы, как правило, не возникает поверхностей или трехмерных тел - появляется необходимость точного описания поверхности и опорного контура, что достигается сочетанием набора КЭ, имеющих различную форму и количество контактирующих узлов или линий. В меньшей степени представляет интерес набор аппроксимирующих функций, положенных в основу алгоритма вычисления матрицы жесткости или напряжений КЭ. Однако для некоторых модификаций МКЭ, например метода пространственных конечных элементов - МПКЭ, положенного в основу программного комплекса КОНТУР , выбор и назначение функций формы осуществляется индивидуально, поскольку от этого зависит конечный результат.

1.3.8. Приступая к расчету конкретной конструкции, следует представить конструктивное решение в виде расчетной схемы, удовлетворяющей условиям и требованиям по разд. 2.1, закодировать в соответствии с инструкцией к программе всю информацию о расчетной модели и получить ряд числовых массивов, каждый из которых имеет определенное смысловое содержание:

1. Общее описание системы и задачи в целом

2. Структура системы

3. Геометрия системы

4. Граничные условия

5. Характеристики материалов

6. Данные о воздействиях

7. Данные для обработки результатов.

Кроме того, может привлекаться служебная и вспомогательная информация, способствующая организации процесса обработки и счета, а также контроля исходных данных. Содержание информации может быть избыточным, но непротиворечивым. В случаях, когда это возможно, программными средствами организуется логический и смысловой контроль исходной информации.

Учебное пособие. - Оренбург: ГОУ ОГУ, 2009. - 161 с.В пособии рассмотрены особенности применения и методики численных методов решения задач по анализу и оптимизации структуры и свойств строительных материалов и изделий, а также технологических режимов их производства.
Учебное пособие предназначено для студентов, обучающихся по специальности 270106 (бывшая 290600 "Производство строительных материалов, изделий и конструкций"), всех форм обучения. Представленный в пособии материал может быть использован при выполнении учебных научно-исследовательских работ.Исторический обзор применения моделирования.
Основы системного анализа и моделирования.
Этапы системного анализа.
Существующие подходы анализа систем.
Понятие о моделировании. Классификация моделей.
Основные этапы и принципы моделирования.
Элементы математической статистики.
Понятие о математической статистике.
Задачи математической статистики.
Первый этап - сбор и первичная обработка данных.
Второй этап - определение точечных оценок распределения.
Третий этап - определение интервальных оценок, понятие о статической гипотезе.
Четвертый этап - аппроксимация выборочного распределения теоретическим законом.
Области применения статистических методов обработки данных.
Статистический контроль прочности бетона.
Метод множественной корреляции.
Математическое моделирование в решении строительно-технологических задач.
Понятие о полиноме, отклике, факторах и уровнях варьирования, факторном пространстве.
Первичная статистическая обработка результатов эксперимента.
Математическая модель эксперимента. Метод наименьших квадратов.
Получение некоторых эмпирических формул.
Метод наименьших квадратов для функции нескольких переменных.
Дисперсионная матрица оценок.
Критерии оптимального планирования.
Планы для построения линейных и неполных квадратичных моделей.
Планы для построения полиномиальных моделей второго порядка.
Регрессионный анализ модели.
Анализ математической модели.
Решение оптимизационных задач.
Моделирование свойств смесей.
Принципы имитационного моделирования.
Решение рецептурно-технологических задач на ЭВМ в режиме диалога.
Основные виды задач, решаемых при организации планирования и управления в строительстве.
Математические модели некоторых задач в строительстве.
Примеры решения некоторых задач.
Решение транспортной задачи.
Решение задачи о ресурсах.
Решение задачи нахождения оптимальной массы фермы.
Организационные задачи.
Моделирование в строительстве.
Модели линейного программирования.
Нелинейные модели.
Модели динамического программирования.
Оптимизационные модели (постановка задач оптимизации).
Модели управления запасами.
Целочисленные модели.
Цифровое моделирование (метод перебора).
Вероятностно-статистические модели.
Модели теории игр.
Модели итеративного агрегирования.
Организационно-технологические модели.
Графические модели.
Сетевые модели.
Организационное моделирование систем управления строительством.
Основные направления моделирования систем управления строительством.
Аспекты организационно-управленческих систем (моделей).
Деление организационно-управленческих моделей на группы.
Виды моделей первой группы.
Виды моделей второй группы.

Роль технико-экономических расчетов для анализа и прогнозирования деятельности, планирования и управления строительными системами значительна, причем узловыми среди них являются вопросы выбора оптимизации решений. При этом решение представляет собой выбор параметров, характеризующих организацию определенного мероприятия, причем выбор почти полностью зависит от лица, принимающего решение .

Решения могут быть удачными или неудачными, обоснованными и неразумными. Практику, как правило, интересуют решения оптимальные, такие, которые являются по тем или иным причинам предпочтительнее, чем другие.

Выбор оптимальных решений особенно в сложных вероятностных математических системах, к которым относятся строительные системы, немыслим без широкого применения математических методов решения задач и средств вычислительной техники.

Сооружение любого строительного объекта происходит путем выполнения в определенной последовательности большого количества разноплановых работ.

Рассмотрим несколько характерных задач и получим для них математическую формулировку (математическую модель).

Задача 1 (Транспортная задача.)

В городе имеется 2 бетонных завода. Первый выпускает вдень 400 т бетона, а второй - 560 т. Бетон с этих заводов отправляется на 4 стройплощадки. На первую стройплощадку поступает в день 220 т бетона, на вторую - 200 т, на третью - 180 т, на четвертую - 360 т. Стоимость перевозки одной тонны бетона с каждого завода на каждую стройплощадку известна. Требуется так организовать перевозку бетона с заводов на стройплощадки, чтобы суммарная стоимость всех перевозок была минимальной.

От содержательной постановки задачи перейдем к математической. Если обозначить через С ij - стоимость перевозки одной тонны бетона с i - го завода на j- ю стройплощадку (это известные величины), а через х ij - количество тонн бетона, которое нужно перевести с i - го завода на j -ю стройплощадку (это искомые величины), то стоимость всех перевозок будет выражаться функцией

Необходимо найти минимум этой функции, но х ij не независимы, они связаны между собой следующими ограничениями. С первого завода вывозится 400 т бетона, следовательно,

Со второго завода вывозится 560 т, следовательно,

На первую стройплощадку завозится 220 т бетона, следовательно,

Аналогично можно записать для остальных стройплощадок:

Таким образом, х ij должны удовлетворять следующей системы ограничений:

К этим ограничениям необходимо добавить еще х ij > 0 (так как обратно бетон со стройплощадок на заводы не увозится).



Задача математически ставится так: найти минимум функции (5.1) при условии, что её аргументы удовлетворяют системе уравнений (5.2).

Задача 2 (Задача о ресурсах).

В распоряжении бригады имеются следующие ресурсы: 300 кг металла, 100 м 2 стекла, 160 чел.-ч (человеко-часов) рабочего времени. Бригаде поручено изготовлять два наименования изделий - А и В. Цена одного изделия А – 10 р., для его изготовления необходимо 4 кг металла, 2 м 2 стекла и 2 чел.-ч рабочего времени. Цена одного изделия В - 12 р., для его изготовления необходимо 5 кг металла, 1 м 2 стекла и 3 чел.-ч рабочего времени. Требуется так спланировать объем выпуска продукции, чтобы ее стоимость была максимальной.

Получим математическую модель этой задачи. Обозначим через х 1 и х 2 количество изделий А и В, которое необходимо запланировать (это искомые величины).

Полная стоимость запланированной к производству продукции выражается функцией

На х 1 изделий А требуется 4х 1 кг металла, 2х 1 м 2 стекла и 2х 1 чел.-ч рабочего времени. На х 2 изделий В требуется 5х 2 , кг металла, х 2 м 2 стекла и 3х 2

чел.-ч рабочего времени. Следовательно, так как ресурсы заданы, то должны выполняться условия:

4 х 1 +5 х 2 < 300

2 х 1 + х 2 < 100 (5.4)

2 х 1 +3 х 2 <160

Таким образом, нужно найти максимум функции (5.3) при условии, что ее аргументы удовлетворяют системе неравенств (5.4).

Задача 3.

Из листового проката определенной формы необходимо вырезать некоторое количество заготовок двух типов А и В для производства 90 шт. изделий. Для одного изделия требуются 2 заготовки типа А и 10 заготовок типа В . Возможны четыре варианта раскроя одного листа проката. Количество заготовок А и В , вырезаемых из одного листа при каждом варианте раскроя, а также отходы от раскроя указаны в таблице 9.



Какое количество листов проката нужно раскроить при помощи каждого варианта для изготовления 90 шт. изделий, чтобы отходы от раскроя были наименьшими?

Таблица 9 – Исходные данные для задачи 3.

Вариант раскроя Заготовки, шт. Отходы от раскроя, ед.
А В

Пусть х 1 , х 2 , х 3 , x 4 - количество листов проката, раскраиваемых соответственно вариантами 1, 2, 3, 4.

Отходы от раскроя составят

Для производства 90 шт. изделий необходимо 180 заготовок типа А и 900 - типа В . Следовательно, аргументы функции (5.5) должны удовлетворять системе уравнений

4 x 1 + 3 х 2 + х 3 =180 (5.6)

З х 2 + 9 x 3 + 12 x 4 =900

Следовательно, математически задача ставится так: найти минимум функции (5.5) при условии, что ее аргументы удовлетворяют системе уравнений (5.6).

Задача 4.

Необходимо составить наиболее дешевую смесь из трех веществ. В состав смеси должны входить не менее 6 единиц химического вещества А , не менее 8 единиц вещества В и не менее 12 единиц вещества С . Имеются 3 вида продуктов (I, II, III), содержащих эти химические вещества в следующих пропорциях (таблица 10).

Таблица 10 – Исходные данные для задачи 4

Продукты Вещества
А В С
I
II
III 1,5

Стоимость одной весовой единицы продукта 1 - 2 р., продукта II -3 р., продукта III - 2,5 р.

Получим математическую модель задачи.

Обозначим через х 1 , х 2 , х 3 - количество продуктов вида I, II, III соответственно, входящих в смесь.

Стоимость смеси из трех веществ выражается функцией

Система ограничений примет вид

2 x 1 + х 2 + 3 x 3 > 6

х 1 + 2 х 2 + 1,5 х 3 >8 (5.8)

3 х 1 + 4х 2 + 2 х 3 >12

Математически задача ставится так: найти минимум функции (5.7) при условии, что ее аргументы удовлетворяют системе неравенств (5.8).

Задача 5.

В задаче 1 все производственное сырье (бетон) было использовано. Но бывает и так, что часть сырья не используется. Такие задачи называются открытыми. Рассмотрим одну из таких задач.

Имеются 4 хранилища горючего с запасами 500, 300, 500 и 200 т и 3 заправочные станции с потребностями 300, 400 и 300 т. Стоимость перевозок одной тонны горючего из хранилищ в заправочные станции приведена в таблице 11.

Таблица 11 – Исходные данные для задачи 5

Требуется спланировать перевозку горючего так, чтобы затраты были минимальными.

В задаче сумма запасов горючего в хранилищах на 500 т больше, чем потребности на станциях. Поэтому введем фиктивную заправочную станцию В с потребностью в горючем 500 т, равной разности суммы запасов и суммы потребностей. Стоимость перевозок горючего из хранилищ А 1 , А 2 , А 3 , А 4 в фиктивную станцию В 4 назначим равной нулю.

Теперь постановка рассматриваемой задачи не отличается от постановки задачи 1.

Задача 6.

Найти оптимальную массу плоской фермы при выполнении условий прочности (рисунок 22).

Рисунок 22 – Условия прочности к задаче 6

Эта задача не столько экономическая, сколько техническая - задача оптимизации строительных конструкций.

Статически неопределимая шарнирно-стержневая система (ферма) нагружена силой F .

Необходимо выбрать площади поперечных сечений А таким образом, чтобы общая масса М фермы была минимальной.

Длина стержней L , м, известна:

l 1 = 6,3246

l 2 = 6,03 ВС = 2

l 3 = 12 СО = 0,6

l 4 =2,6

Масса фермы определяется формулой

где ρ - удельный вес материала стержней, кг/м 3 .

Выражение (5.9) - функция цели, минимум которой нужно найти.

Систему ограничений составим из условий прочности. Требуется, чтобы во всех стержнях фермы напряжения не превосходили по абсолютной величине расчетного сопротивления материала стержней R (одинакового на растяжение и сжатие).

Следовательно, система ограничений представляется в виде двух неравенств

Первое неравенство в (5.11) означает, что стержень работает на сжатие, второе - на растяжение. Так как стержни 1 и 4 работают только на сжатие, а 2 - только на растяжение, то систему (5.11) можно записать в виде

Исходя из условий равновесия в узлах фермы, получим три уравнения с четырьмя неизвестными:

Подставляя эти выражения в неравенства (5.12) и вводя дополнительные переменные у , получим систему ограничений в виде равенств:

y 1 – RA 1 +1,5812N 4 =-1,5812F

y 2 – RA 2 -5,025N 4 =0

y 3 – RA 3 -6,5N 4 =1,5F (5.13)

y 4 – RA 3 +6,5N 4 =-1,5F

y 5 – RA 4 -N 4 =0

Таким образом, математически задача ставится так: найти минимум функции (5.9) при условии, что ее аргументы удовлетворяют системе ограничений (5.13).

Таким образом, для различных производственных задач получается одна и та же математическая модель, которая состоит в следующем.

Нужно найти экстремум некоторой функции, аргументы которой удовлетворяют некоторой системе уравнений или неравенств. Такие задачи получили название задач математического программирования.

Функция, глобальный экстремум которой находится, называется функцией цели, а условия, налагаемые на ее аргументы, называются системой ограничений.

Естественными называются ограничения, при которых все аргументы функции цели считаются неотрицательными.

Канонической формой задачи математического программирования считается такая форма, когда находится глобальный минимум функции цели и система ограничений, исключая естественные, выражается равенствами.

Различают следующие виды математического программирования: линейное, нелинейное, динамическое и др.

Математическое программирование называется линейным, если функция цели и система ограничений линейны относительно всех аргументов.

В противном случае математическое программирование называется нелинейным.

Математическое программирование называется динамическим, если условия рассматриваемой задачи зависят от времени.

Область возможного изменения аргументов функции цели, определяемая системой ограничений, называется областью допустимых значений аргументов. Следовательно, минимум функции цели нужно искать в точках, принадлежащих этой области. Можно показать, что в случае линейного программирования областью допустимых значений аргументов будет:

при 2 аргументах - выпуклый многоугольник, так как система ограничений в этом случае (графически) - это система прямых линий (рисунок 23);

Рисунок 23 – Область допустимых значений при двух аргументах

при 3 аргументах – выпуклый многогранник;

при n > 3 аргументов – это выпуклый гипермногогранник.

В математическом программировании речь идет о нахождении глобального экстремума функции цели. Этот экстремум может быть внутри или на границе области допустимых значений аргументов.

Можно показать, что в случае линейного программирования, если глобальный экстремум функции цели существует, то он имеет место только в вершинах многоугольника, многогранника и гипермногогранника.

Дадим общую формулировку задачи линейного программирования в канонической форме. Требуется найти глобальный минимум линейной функции n аргументов (функции цели)

при условии, что аргументы этой функции удовлетворяют следующей совместной (имеющей решение), неопределенной (имеющей множество решений) системе линейных алгебраических уравнений,

a 11 x 1 +a 12 x 2 +…+a 1n x n =b 1

a 21 x 1 +a 22 x 2 +…+a 2 n x n =b 2 (5.15)

…....................................

a m 1 x 1 +a m 2 x 2 +…+a mn x n =b m

ранг матрицы которой r < n .

(Ранг матрицы – это наивысший порядок отличного от нуля определителя, который можно из этой матрицы составить.) Ранг матрицы равен числу основных, базисных неизвестных. Будем считать, что все b k > 0 . Занумеруем неизвестные так, чтобы свободными неизвестными были первые р неизвестных (р = n – r) . Тогда прочие r неизвестных, называемых базисными, можно выразить из системы (5.15):

x p +1 =β 1 + α 12 x 1 + α 12 x 2 +…+α 1 p x p

x p +2 =β 2 + α 21 x 1 + α 22 x 2 +…+α 2 p x p (5.16)

…................................................

x p + r =β r + α r 1 x 1 + α r 2 x 2 +…+α rp x p

Система (5.16) называется базисной системой ограничений.

Подставив (5.16) в выражение (5.14) вместо базисных неизвестных, получим функцию цели в базисной форме

Задание функции цели в виде (5.17), а системы ограничений в виде (5.16) называется базисной формой задачи линейного программирования (такая форма задачи линейного программирования нужна для симплекс-метода).

Упорядоченная совокупность n величин (х 1 , х 2 , …, x n) , удовлетворяющая системе ограничений (5.15) или (5.16), называется допустимым решением (планом).

Допустимое решение, у которого все свободные неизвестные равны нулю, называется допустимым базисным решением, или опорным планом (это как раз вершины многоугольника, многогранника, гипермногогранника). Упорядоченная совокупность n величин (х 1 х 2 , …,х n) , удовлетворяющая системе ограничений (5.15) или (5.16) и дающая глобальный экстремум функции цели (5.14) или (5.17) называется оптимальным решением (планом).

Известно, что оптимальный план, если он существует, принадлежит множеству опорных планов.

Число опорных планов конечно. Оно равно С (числу сочетаний из n по р ). Но, например, число С 20 50 = 10 20 – очень большое, перебор всех опорных планов провести трудно, поэтому такой перебор нереален.

Американским экономистом Дж. Данцигом был предложен метод направленного перебора опорных планов, при котором функция цели все время уменьшается. Такой метод получил название симплекс-метода. При таком направленном переборе нужно провести не более 2n переборов опорных планов.

Изложим методику применения симплекс-метода в общем виде.

1 Систему ограничения вида (5.15) следует привести к базисной форме по правилам линейной алгебры.

2 Положив в базисной системе уравнений все свободные неизвестные равными нулю, нужно найти значения базисных неизвестных. Если эти значения будут неотрицательными, то первый исходный план будет опорным. В противном случае следует выбрать другие свободные неизвестные так, чтобы исходный план был опорным.

3 В выражении функции цели базисные неизвестные нужно заменить их выражениями из базисной системы уравнений.

4 Положив в найденном выражении функции цели все свободные неизвестные равными нулю, найдем значение функции цели, соответствующее выбранному опорному плану.

5 Если все коэффициенты при свободных неизвестных в функции цели неотрицательные, то найденный опорный план будет оптимальным, а найденное значение функции цели будет искомым глобальным ее минимумом.

6 Если же не все коэффициенты при свободных неизвестных функции цели будут неотрицательными, то нужно выбрать свободную неизвестную с отрицательным коэффициентом, например, x α (обычно берется неизвестная с максимальным по модулю отрицательным коэффициентом). Далее положить в базисной системе уравнений все свободные неизвестные, кроме х α , равными нулю и определить максимально возможное значение х α , при котором все базисные неизвестные неотрицательные.

7 Ту из базисных неизвестных, например, х β , которая обращается в нуль при указанном значении x α , следует выбрать за свободную неизвестную вместо x .

Неизвестную же x α перевести в разряд базисных.

В математическом обеспечении ЭВМ есть стандартная программа решения задач линейного программирования по симплекс-методу.

Учебно-методическое пособие


УДК 69-50 (07)

Рецензент:

д.э.н., профессор Грахов В.П.

Составитель:

Математическое моделирование в строительстве. Учебно-методическое пособие / Сост. Иванова С.С. – Ижевск: Изд-во ИжГТУ, 2012. – 100 с.

УДК 69-50 (07)

Ó Иванова С.С 2012

Ó Издательство ИжГТУ, 2012

Введение

1. Обзор применения моделей в экономике

1.1. Исторический обзор

2. Основные виды задач, решаемых при организации, планировании и управлении строительством

2.1. Задачи распределения

2.2. Задачи замены

2.3. Задачи поиска

2.6. Задачи теории расписаний

3. Моделирование в строительстве

3.1. Основные положения

3.2. Виды экономико-математических моделей в области организации, планирования и управления строительством

3.2.1. Модели линейного программирования

3.2.2. Нелинейные модели

3.2.3. Модели динамического программирования

3.2.4. Оптимизационные модели (постановка задачи оптимизации)

3.2.5. Модели управления запасами

3.2.6. Целочисленные модели

3.2.7. Цифровое моделирование (метод перебора)

3.2.8. Имитационные модели

3.2.9. Вероятностно - статистические модели

3.2.10. Модели теории игр

3.2.11. Модели итеративного агрегирования

3.2.12. Организационно-технологические модели

3.2.13. Графические модели

3.2.14. Сетевые модели



4. Организационное моделирование систем управления строительством

4.1. Основные направления моделирования систем управления строительством

4.2. Аспекты организационно-управленческих систем (моделей)

4.3. Деление организационно-управленческие моделей на группы

4.3.1. Модели первой группы

4.3.2. Модели второй группы

4.4. Виды моделей первой группы

4.4.1. Модели принятия решений

4.4.2. Информационные модели коммуникационной сети

4.4.3. Компактные информационные модели

4.4.4. Интегрированные информационно-функциональные модели

4.5. Виды моделей второй группы

4.5.1. Модели организационно-технологических связей

4.5.2. Модель организационно-управленческих связей

4.5.3. Модель факторного статистического анализа управленческих связей

4.5.4. Детерминированные функциональные модели

4.5.5. Организационные модели массового обслуживания

4.5.6. Организационно-информационные модели

4.5.7. Основные этапы и принципы моделирования

5. Методы корреляционно-регрессивного анализа зависимости между факторами, включаемые в экономико-математические модели

5.1. Виды корреляционно-регрессивного анализа

5.2. Требования к факторам, включаемым в модель

5.3. Парный корреляционно-регрессивный анализ

5.4. Множественный корреляционный анализ

ВВЕДЕНИЕ

Современное строительство - это очень сложная система, в деятельности которой принимает большое количество участников: заказчик, генподрядные и субподрядные строительно-монтажные и специализированные организации; коммерческие банки и финансовые органы и организации; проектные, а нередко и научно-исследовательские институты; поставщики строительных материалов, конструкций, деталей и полуфабрика­тов, технологического оборудования; организации и органы, осуществляющие различные виды контроля и надзора за строительством; подразделения, эксплуатирующие строительную технику и механизмы, транспортные средства и т.д.

Для того, чтобы построить объект, необходимо организовать согласованную работу всех участников строительства.

Строительство протекает в непрерывно меняющихся условиях. Элементы такого процесса связаны между собой и взаимно влияют друг на друга, что усложняет анализ и поиск оптимальных решений.

На стадии проектирования строительной, любой другой производственной системы, устанавливаются ее основные технико-экономические параметры, организационно-управленческая структура, ставится задача определения состава и объема ресурсов - основных фондов, оборотных средств, потребности в инженерных, рабочих кадрах и т.д.

Чтобы вся система строительства действовала целесообразно, эффективно использовала ресурсы, т.е. выдавала готовую продукцию - здания, сооружения, инженерные коммуникации или их комплексы в заданные сро­ки, высокого качества и с наименьшими затратами трудовых, финансовых, материальных и энергетических ресурсов, надо уметь грамотно, с научной точки зрения, осуществлять анализ всех аспектов ее функционирования, находить наилучшие варианты решений, обеспечивающих ее эффективную и надежную конкурентоспособность на рынке строительных услуг.

В ходе поиска и анализа возможных решений по созданию оптимальной структуры предприятия, организации строительного производства и т.д. всегда появляется желание (требуется) отобрать лучший (оптималь­ный) вариант. Для этой цели приходится использовать математические расчеты, логические схемы (представления) процесса строительства объекта, выраженные в виде цифр, графиков, таблиц и т.д. - другими словами, представлять строительство в виде модели, используя для этого методологию теории моделирования.

В основе любой модели лежат законы сохранения. Они связывают между собой изменение фазовых состояний системы и внешние силы, действующие на нее.

Любое описание системы, объекта (строительного предприятия, процесса возведения здания и т.д.) начинается с представления об их состоянии в данный момент, называемом фазовым.

Успех исследования, анализа, прогнозирования поведения строительной системы в будущем, т.е. появления желаемых результатов ее функционирования, во многом зависит от того, насколько точно исследователь "угадает" те фазовые переменные, которые определяют поведение системы. Заложив эти переменные в некоторое математическое описание (модель) этой системы для анализа и прогнозирования ее поведения в будущем, можно использовать достаточно обширный и хорошо разработанный арсенал математических методов, электронно-вычислительную технику.

Описание системы на языке математики называется математической моделью, а описание экономической системы – экономико-математической моделью.

Многочисленные виды моделей нашли широкое применение для предварительного анализа, планирования и поиска эффективных форм организации, планирования и управления строительством.

Цель данного учебного пособия – ознакомить в очень сжатой и простой форме студентов строительных ВУЗов и факультетов с арсеналом основных задач, стоящих перед строителями, а также методами и моделями, способствующими прогрессу проектирования, организации и управления строительством и нашедшими широкое применение и повседневной практике.

Мы считаем, что каждый инженер, менеджер, работающий в сфере строительства - на возведении конкретного объекта, в проектном или научно-исследовательском институте, должен иметь представление об основных классах моделей, их возможностях и областях применения

Так как формулировка любой задачи, включая алгоритм ее решения, является в некотором смысле своеобразной моделью и более того, создание любой модели начинается с постановки задачи, мы сочли возможным начать тему моделирования с перечня основных задач, стоящих перед строителями.

Сами математические методы не являются объектом рассмотрения в данном учебном пособии, а конкретные модели и задачи приводятся с учетом их значимости и частоты применения в практике организации, планирования и управления строительством.

В случае создания модели сложных строительных объектов к процессу моделирования и анализа моделей привлекаются программисты, математики, инженеры-системотехники, технологи, психологи, экономисты, менеджеры и другие специалисты, а также используются электронно-вычислительная техника.

1. ОБЗОР ПРИМЕНЕНИЯ МОДЕЛЕЙ В ЭКОНОМИКЕ

1.1. Исторический обзор

В практической деятельности человека математика используется очень давно. На протяжении многих веков применялись геометрия и алгебра для разнообразных хозяйственных вычислений и измерений. Хотя развитие математики долгое время определялось в основном потребностями естественных наук и внутренней логикой самой математики, применение математических методов в экономике имеет также богатое прошлое.

Родоначальник классической политической экономии В.Петти (1623-1687) писал в предисловии к своей "Политической арифметике": "...вместо того, чтобы употреблять слова только в сравнительной и превосходной степени и прибегать к умозрительным аргументам, я вступил на путь выражения своих мнений на языке чисел, весов и мер..." (Петти В. Экономические и статистические работы. М., Соцэкгиз, 1940, с. 156).

Первая в мире модель народного хозяйства была создана французским ученым Ф.Кенэ (1694-1774). В 1758 г. он опубликовал первый вариант своей знаменитой "Экономической таблицы", получившей название "зигзаг"; второй вариант - "арифметическая формула" - был опубликован в 1766 году. "Эта попытка, - писал К.Маркс о таблице Ф.Кенэ, - сделанная во второй трети XVIII века, в период детства политической экономии, была в высшей степени гениальной идеей, бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия". (Маркс К., Энгельс Ф. Соч. Изд. 2-е, т.26, ч.1, с.345).

"Экономическая таблица" Ф.Кенэ представляет собой схему (графико-числовую модель) процесса общественного воспроизводства, из которой он делает вывод, что нормальный ход общественного воспроизводства может осуществляться только при соблюдении определенных оптимальных материально-вещественных пропорций.

Значительное влияние на развитие методологии экономико-математических исследований оказали труды К.Маркса. Его "Капитал" содержит немало примеров использования математических методов: обстоятельный параметрический анализ формулы средней прибыли; уравнения, связывающие абсолютную, дифференциальную и суммарную ренту; математическая формулировка соотношения стоимости и производительности труда (стоимость прямо пропорциональна производительной силе труда), законы массы прибавочной стоимости и денежного обращения, условия формирования цены производства и т.д. П.Лафарг в воспоминаниях о К.Марксе писал: "В высшей математике он находил диалектическое движение в его наиболее логичной и в то же время простейшей форме. Он считал также, что наука только тогда достигает совершенства, когда ей удается пользоваться математикой". (Воспоминания о Марксе и Энгельсе.М., Гос-политиздат, 1956, с.66).

В рамках буржуазной экономической науки ХIХ-ХХ веков можно выделить три основных этапа развития экономико-математических исследований: математическая школа в политэкономии, статистическое направление, эконометрика.

Представители математической школы считали, что обосновать положения экономической теории можно только математически, а все выводы, полученные иными способами, могут приниматься в лучшем случае в качестве научных гипотез. Родоначальником математической школы является французский ученый, выдающийся математик, философ, историк и экономист О.Курно (1801-1877), выпустивший в 1838 г, книгу "Исследование математических принципов теории богатства". Виднейшими представителями математической школы были: Г.Госсен (1810-1858),| Л.Вальрас (1834-1910), У.Джевонс (1835-1882), Ф.Эджворт (1845-1926), В.Парето (1848-1923), В.Дмитриев (1868-1913). В целом эта школа относиться к субъективистскому направлению буржуазной политэкономии, идеологические и методологические принципы которого неоднократно подвергались критике со стороны ученых-марксистов. Вместе с тем, математическая школа показала большие возможности применения математического моделирования.

Представители математической школы выдвинули и пытались развить ряд важных теоретических подходов и принципов: понятие экономического оптимума; применение показателей затрат и предельных эффектов в рациональном хозяйствовании; взаимосвязанность проблем ценообразования и общей пропорциональности народного хозяйства. В современную экономическую науку вошли и широко в ней используются понятия кривых безразличия и ядра экономической системы Ф.Эджворта, понятие многоцелевого оптимума В.Парето, модель общего экономического равновесия Л.Вальраса, формула исчисления полных затрат труда и других ресурсов В.Дмитриева.

Статистическое направление (статистическая экономика), возникшее на пороге XX века, представляли собой, с точки зрения методологии исследования, прямую противоположность математической школе.

Стремление использовать эмпирический материал, конкретные экономические факты было несомненно прогрессивным явлением. Идеологи статистической экономики, провозгласив тезис: «наука есть измерение», впадали в другую крайность, пренебрегая теоретическим анализом. В рамках статистического направления было разработано большое количество "математико-статистических моделей" экономических явлений, используемых в основном для краткосрочного прогнозирования. Типичным примером может служить "Гарвардский барометр" - модель прогнозирования хозяйственной конъюнктуры (предсказания "экономической погоды"), разработанная учеными Гарвардского университета (США) под руководством Т.Парсона (1902-1979).

Гарвардская и другие подобные модели, построенные во многих капстранах, носили экстраполяционный характер и не вскрывали глубинных факторов экономики. Поэтому на протяжении ряда лет после первой мировой войны, в период экономической стабилизации, они хотя и хорошо предсказывали "экономическую погоду", но "не заметили" приближения крупнейшего в истории капитализма экономического кризиса 1929-1932 гг. Крах на Нью-Йоркской бирже осенью 1929 г. означал одновременно и закат статистического направления в экономико-математических исследованиях.

Заслугой статистического направления является разработка методических вопросов обработки экономических данных, статистических обобщений и статистического анализа (выравнивание динамических рядов и их экстраполяция, выделение сезонных и циклических колебаний, факторный анализ, корреляционный и регрессионный анализ, проверка статистических гипотез и т.д.).

На смену статистического направления пришла эконометрика, которая пытается соединить достоинства математической школы и статистической экономики. Термин эконометрика (или эконометрия) для обозначения нового направления в экономической науке ввел норвежский ученый Р.Фриш (1895-1973), провозгласивший, что экономика есть синтез экономической теории, математики и статистики. Эконометрика является наиболее быстро развивающейся областью буржуазной экономической науки. Трудно указать такие теоретические и практические проблемы капиталистической экономики, в решении которых в настоящее время не применялись бы математические методы и модели. Математическое моделирование стало наиболее престижным направлением в экономической науке Запада. Не случайно с момента учреждения Нобелевских премий по экономике (1969 г.) они присуждаются, как правило, за экономико-математические исследования. Среди Нобелевских лауреатов виднейшие эконометрики: Р.Фриш, Я.Тинберген, П.Самуэльсон, Д.Хис, В.Леонтьев, Т.Купманс, К.Эрроу.

1.2. Развитие моделирования в России

Значителен вклад ученых России в развитие экономико-математических исследований. В 1867 году в журнале "Отечественные записки" была опубликована заметка об эффективности применения математических методов к изучению экономических явлений. В русских изданиях критиче­ски анализировались работы Курно, Вальраса, Парето и других западных экономистов-математиков.

С конца XIX века появляются оригинальные экономико-математические исследования русских ученых: В.К.Дмитриева, В.И.Борткевича, В.С.Войтинского, М.Оржнецкого, В.В.Самсонова, Н.А.Столярова, Н.Н.Шапошникова.

Интересные работы по применению методов математической ста­тистики, в частности по корреляционному анализу экономических явлений, выполнял А.А.Чупров (1874-1926).

Наиболее крупным экономистом-математиком дореволюционной России был В.К.Дмитриев (1868-1913). Его первая известная работа "Теория ценности Д.Рикардо. Опыт органического синтеза трудовой ценности и теории предельной полезности" была опубликована в 1898 г. Основной труд В.К.Дмитриева "Экономические очерки" вышел в 1904 году и состоял в разработке модели полных затрат труда и сбалансированных цен в видесистемы линейных уравнений с технологическими коэффициентами. "Формула В.К.Дмитриева" спустя несколько десятков лет нашло широкое применение в моделировании межотраслевых связей в СССР и за рубежом.

Широко известен своими работами по теории вероятности и математической статистике Е.Е.Слуцкий (1880-1948). В 1915 г. Он опубликовал в итальянском журнале "Giomale degli economisti e rivista di statistica", № 1 статью «К теории сбалансированности бюджета потребителя», оказавшую большое влияние на экономико-математическую теорию. Спустя 20 лет, эта статья получила мировое признание.

Лауреат Нобелевской премии Д.Хикс в книге "Стоимость и капитал" (1939) писал, что Е.Е.Слуцкий был первым экономистом, сделавшим значительный шаг вперед по сравнению с классиками математической школы. Д.Хикс оценивал свою книгу как первое систематическое исследование той теории, которую открыл Е.Е.Слуцкнн" (Hicks I.R. Value and capital. Oxford, 1946, р. 10). Английский экономист-математик Р.Аллен, автор известной книги "Математическая экономия", отмечал в журнале "Эконометрика", что работы Слуцкого оказали "великое и прочное влияние на развитие эконометрики".

Е.Е.Слуцкий является одним из родоначальников праксеологии (науки о принципах рациональной деятельности людей) и первым, кто ввел праксеологию в экономическую науку.

Большое значение в становлении экономическом науки, создании общегосударственной системы учета, планирования и управления имели научные труды и практическая деятельность В.И.Ленина (1870-1924). Работы В.И.Ленина определили главные принципы и проблемы исследований по моделированию социалистической экономики.

В 20-е годы экономико-математические исследования в СССР проводились в основном по двум направлениям: моделирование процесса расширенного воспроизводства и применение методов математической статистики в изучении хозяйственной конъюнктуры и в прогнозировании.

Одним из первых советских специалистов области экономико-математических исследований являлся А.А.Конюс, опубликовавший в 1924 году по данной теме статью "Проблема истинного индекса стоимости жизни" ("Экономический бюллетень конъюнктурного института", 1924, № 11-12).

Значительной вехой в истории экономико-математических исследований явилась разработка Г.А.Фельдманом (1884-1958) математических моделей экономического роста. Свои основные идеи по моделированию социалистической экономики он изложил в двух статьях, опубликованных в журнале "Плановое хозяйство" в 1928-1929 гг Статьи Г.А.Фельдмана намного опередили работы западных экономистов по макроэкономическим динамическим моделям и в еще большей степени по двухсекторным моделям экономического роста. За рубежом эти статьи были "открыты" только в 1964 году и вызвали огромный интерес.

В 1938-1939 гг. ленинградский математик и экономист Л.В.Канторович в результате анализа ряда проблем организации и планирования производства сформулировал новый класс условно-экстремальных задач с ограничениями в виде неравенств и предложил методы их решения. Эта новая область прикладной математики позже получила название "линейное программирование". Л.В.Канторович (1912-1986) является одним из создателей теории оптимального планирования и управления народным хозяйством, теории оптимального использования сырьевых ресурсов. В 1975 году Л.В.Канторовичу совместно с американским ученым Т.Купмансом была присуждена Нобелевская премия за исследования по оптимальному использованию ресурсов.

Большой вклад в использование экономико-математических методов внесли: экономист Новожилов В.В. (1892-1970) - в области соизмерения затрат и результатов в народном хозяйстве; экономист и статистик Немчинов В.С. (1894-1964) - в вопросах экономико-математического моделирования планового хозяйства; экономист Федоренко Н.П. - при решении проблем оптимального функционирования экономики страны, применении математических методов и ЭВМ в планировании и управлении, а также многие другие видные российские экономисты и математики.

2. ОСНОВНЫЕ ВИДЫ ЗАДАЧ, РЕШАЕМЫХ ПРИ ОРГАНИЗАЦИИ, ПЛАНИРОВАНИИ И УПРАВЛЕНИИ СТРОИТЕЛЬСТВОМ

Роль технико-экономических расчетов для анализа и прогнозирова­ния деятельности, планирования и управления строительными системами значительна, причем узловыми среди них являются вопросы выбора оптимальных решений. При этом решение представляет собой выбор параметров, характеризующих организацию определенного мероприятия, причем этот выбор почти полностью зависит от лица, принимающего решение.

Решения могут быть удачными или неудачными, обоснованными и неразумными. Практику, как правило, интересуют решения оптимальные, т.е. такие, которые являются по тем или иным причинам предпочтительнее, лучше, чем другие.

Выбор оптимальных решений особенно в сложных вероятностных динамических системах, к которым относятся строительные системы, немыслим без широкого применения математических методов решения экстремальных задач и средств вычислительной техники.

Сооружение любого строительного объекта происходи путем выполнения в определенной последовательности большого количества разноплановых работ.

Для выполнения любого вида работ требуется определенный набор материалов, машин, средств малой механизации, людских ресурсов, организационного обеспечения и т.д. и т.п. Причем зачастую количество и качество выделяемых ресурсов определяет длительность выполнения этих работ.

Распределяя правильно (или, как принято говорить "оптимально") ресурсы, можно влиять на качество, сроки, стоимость строительства, производительность труда.

2.1. Задачи распределения

Задачи распределения в общем случае возникают тогда, когда существует ряд работ, подлежащих выполнению, и требуется выбрать наиболее эффективное распределение ресурсов и работ. Задачи этого типа можно разделить на три основных группы.

Задачи распределения первой группы характеризуются следующими условиями.

1.Существует ряд операций, которые должны быть выполнены.

2.Имеется достаточное количество ресурсов для выполнения всех операций.

3.Некоторые операции можно выполнять различными способами, с использованием различных ресурсов, их комбинаций, количества.

4.Некоторые способы выполнения операции лучше других (более дешевые, более прибыльные, требующие меньше затрат времени и т.д.).

5.Тем не менее, имеющееся количество ресурсов недостаточно для выполнения каждой операции оптимальным способом.

Задача заключается в том, чтобы найти такое распределение ресурсов по операциям, при котором достигается максимальная общая эффективность системы. Например, могут минимизироваться суммарные затраты или максимизироваться общая прибыль.

Вторая группа задач возникает, когда наличных ресурсов не хватает для выполнения всех возможных операций. В этих случаях приходится выбирать операции, которые должны быть выполнены, а также определять способ их выполнения.

Задачи третьей группы возникают тогда, когда имеется возможность регулировать количество ресурсов, т.е. определять, какие ресурсы следует добавить, а от каких целесообразно отказаться.

Большинство задач такого рода решается в целях оптимизации строительных и технологических процессов. Основное средство их анализа - модели математического программирования, сетевые графики.

2.2. Задачи замены

Задачи замены связаны с прогнозированием замены оборудования в связи с их физическим или моральным износом.

Различают два типа задач замены. В задачах первого типа рассматриваются объекты, некоторые характеристики которых ухудшаются в процессе их эксплуатации, но сами они полностью выходят из строя через довольно продолжительное время, выполнив значительный объем работы.

Чем дольше эксплуатируется подобного рода объект без профилактики или капитального ремонта, тем менее эффективной становится его работа, повышается стоимость единицы продукции.

Для поддержания эффективности работы такого объекта необходимо его обслуживание, ремонт, что сопряжено с определенными затратами. Чем дольше он эксплуатируется, тем выше затраты на поддержание его в работоспособном состоянии. С другой стороны, если часто заменять такие объекты, то возрастает объем капиталовложений. Задача сводится, в этом случае, к определению порядка и сроков замены, при которых достигается минимум общих эксплуатационных затрат и капиталовложений.

Наиболее общим методом решения задач такого типа является динамическое программирование.

Объектами рассматриваемой группы являются строительно-дорожная техника, оборудование, транспортные средства и т.п.

Второй тип объектов характеризуется тем, что они полностью выходят из строя внезапно или через определенный отрезок времени. В этой ситуации задача сводится к определению целесообразных сроков индивидуальной или групповой замены, а также частоты этой операции, при этом стремятся выработать стратегию замены, которая обеспечивает сведение к минимуму затрат, включающих стоимость элементов, потери от отказов и расходы на замену.

К объектам второго типа относятся детали, узлы, агрегаты строительно-дорожной техники, оборудования. Для решения задач второго типа используются вероятностные методы и статистическое моделирование.

Частным случаем задач замены являются задачи эксплуатации и ремонта.

2.3. Задачи поиска

Задачи поиска связаны с определением наилучших способов получения информации с тем, чтобы минимизировать общую сумму двух типов затрат: затрат на получение информации и затрат, вызванных ошибками в принимаемых решениях из-за отсутствия точной и своевременной информации. Эти задачи используются при рассмотрении большого круга вопросов анализа хозяйственной деятельности строительной организации, например, задачи оценки и прогнозирования, построения спечем контроля качества, многие бухгалтерские процедуры и т.п.

В качестве средств, применяемых при решении таких задач, используются в основном вероятностные и статистические методы.

2.4. Задачи массового обслуживания или задачи очередей

Теория массового обслуживания предоставляет собой раздел теории вероятности, в котором изучается поведение систем, состоящих, как правило, из 2-х подсистем (см. рис.1). Одна из них является обслуживающей, а другая - источником заявок на обслуживание, которые образуют поток, носящий случайный характер. Заявки, не обслуженные и момент поступления, образуют очередь, поэтому теорию массового обслуживания иногда называют теорией очередей. Теория эта отвечает на вопрос, какой должна быть обслуживающая подсистема, чтобы суммарные экономические потери от простоя обслуживающей подсистемы и от простоя заявок в очереди были минимальными. Многие задачи из области организации и управления в строительстве относятся к задачам, решаемым методами теории очередей.

Рис. 1. Система массового обслуживания

Так, в задачах массового обслуживания или задачах очередей рассматриваются связи между потоком строительных работ и машинами, используемыми для их механизации. Типичными задачами массового обслуживания являются задачи на определение количества строительных бригад, машинной техники, организации работы автоматических линий и систем комплексной автоматизации производственных процессов, задачи, связанные с организационно-производственной структурой строительных организаций и т.д.

Для решения задач массового обслуживания часто применяется метод статистических испытаний, заключающийся в воспроизведении на ЭВМ строительного процесса или, иначе говоря, случайного процесса, опи­сывающего поведение системы, с последующей статистической обработкой результатов ее функционирования.

2.5. Задачи управления запасами (создание и хранение)

Каждая стройка нуждается в строительных конструкция, материалах, полуфабрикатах, сантехоборудовании и т.д. Как правило, поставки и расходование их неравномерны, часто в них вносится элемент случайности. Чтобы строительное производство не задерживалось из-за отсутствия материалов и оборудования, на стройке должен иметься некоторый их за­пас. Однако этот запас не должен быть велик, так как хранение строительных материалов и различного оборудования связано с расходами на строительство и эксплуатацию складов, а также с замораживанием средств, затраченных на их приобретение и строительство.

Различают два вида издержек, связанных с использованными ресурсами /1/:

Издержки, возрастающие с ростом запасов;

Издержки, убывающие с ростом запасов.

Возрастающие издержки включают складские расходы; потери, обусловленные старением, порчей; налоги, страховые взносы и т.п.

Издержки, убывающие при увеличении запасов, могут быть четырех видов.

1.Издержки, связанные с отсутствием запасов или несвоевременными поставками.

2.Расходы на подготовительно-заготовительные операции: чем большие объемы продукции закупаются или производятся, тем реже обрабатываются заказы.

3.Продажная цена или прямые издержки производства. Продажа по сниженным ценам, закупка товара большими партиями требует увеличения складских запасов.

4.Издержки, вызываемые наймом, увольнением и обучением работников.

Решение задач управления запасами позволяет определить, что заказывать, сколько заказывать и когда, чтобы минимизировать издержки, связанные как с созданием избыточных запасов, так и с их недостаточным уровнем, когда дополнительные издержки возникают из-за нарушения ритма производства.

Средствами анализа таких задач являются теория вероятностей, статистические методы, методы линейного и динамического программирования, методы моделирования.

2.6. Задачи теории расписаний

Многие задачи планирования и управления строительным производством требуют упорядочения во времени использования некоторой фиксированной системы ресурсов (сборные конструкции, краны, автотранспорт, трудовые ресурсы и т.д.) для выполнения заранее определенной совокупности работ в оптимальный промежуток времени.

Круг вопросов, связанных с построением оптимальных (по тому или иному критерию) календарных планов, с разработкой математических методов получения решений, на базе использования соответствующих моделей, изучается в теории расписаний.

Задачи теории расписаний возникают повсюду, где существует необходимость выбора того или иного порядка выполнения работ, т.е. изучаемые в теории расписаний модели отражают специфические ситуации, возникающие при организации любого производства, при календарном планировании строительства, во всех случаях целенаправленной человеческой деятельности.

Практические цели требуют, чтобы модель строительного производства полнее отражала реальные процессы и вместе с тем была настолько простой, чтобы искомые результаты можно было получать за приемлемое время. Анализируемые в рамках теории расписаний модели являются разумным компромиссом между этими естественными, но противоречивыми тенденциями.

3. МОДЕЛИРОВАНИЕ В СТРОИТЕЛЬСТВЕ

3.1. Основные положения

Практически для любой задачи организации, планирования и управления строительством характерна множественность ее возможных решений, зачастую большая неопределенность и динамичность осуществляемых процессов. В процессе разработки плана работы строительной организации, плана возведения объекта строительства приходится сравнивать между собой огромное количество вариантов и выбирать из них оптимальный в соответствии с выбранным критерием. Критерий - это тот показатель, который является мерилом эффективности плана (пути) достижения цели.

Для предварительного анализа и поиска эффективных форм организации, а также планирования и управления строительством используется моделирование.

Моделирование - это создание модели, сохраняющей существенные свойства оригинала, процесс построения, изучения и применения модели. Моделирование является основным инструментом анализа, оптимизации и синтеза строительных систем. Модель - это упрощенное представление некоторого объекта (системы), процесса, более доступное для изучения, чем сам объект.

Моделирование дает возможность проводить эксперименты, анализировать конечные результаты не на реальной системе, а на ее абстрактной модели и упрощенном представлении-образе, привлекая, как правило, для этой цели ЭВМ. При этом необходимо иметь в виду, что модель является лишь орудием исследования, а не средством получения обязательных решений. Вместе с тем она дает возможность выделить наиболее существенные, характерные черты реальной системы. К модели, как и к любой научной абстракции, относятся слова В.И.Ленина: "Мышление, восходя от конкретного к абстрактному, не отходит.. .от истины, а подходит к ней.. .все научные (правильные, серьезные, невздорные) абстракции отражают природу глубже, важнее, полнее" (В.И.Ленин. Поли.собр.соч. Изд. 5-е, т.29, с. 152).

Современное строительство как системный объект характеризуется высокой степенью сложности, динамичностью, вероятностным характером поведения, большим числом составляющих элементов со сложными функциональными связями и другими особенностями. Для эффективного анализа и управления такими сложными системными объектами необходимо иметь достаточно мощный аппарат моделирования. В настоящее время интенсивно ведутся исследования в области совершенствования моделирования строительства, однако практика пока еще располагает моделями с довольно ограниченными возможностями полного адекватного отображения реальных процессов строительного производства. Разработать универсальную модель и единый метод ее реализации в настоящее время практически невозможно. Одним из путей решения данной проблемы является построение локальных экономико-математических моделей и методов их машинной реализации.

В общем случае модели подразделяются на физические и знаковые . Физические модели, как правило, сохраняют физическую природу оригинала.